Appendix 5.2. Methodology for preparation of ZTV and Visualisations

ZTV Studies

5.2.1. ZTV studies are prepared using the ESRI ArcGIS Viewshed routine. This creates a raster image that indicates the visibility (or not) of the points modelled. LDA Design undertake a ZTV study that is designed to include visual barriers from settlements and woodlands (with heights derived from NEXTMAP 25 surface mapping data). If significant deviations from these assumed heights are noted during site visits, for example young or felled areas of woodland, or recent changes to built form, the features concerned will be adjusted within the model or the adoption of a digital surface model will be used to obtain actual heights for these barriers.

5.2.2. The model is also designed to take into account both the curvature of the earth and light refraction, informed by the SNH guidance. LDA Design undertake all ZTV studies with observer heights of 2m.

5.2.3. The ZTV analysis begins at 1m from the observation feature and will work outwards in a grid of the set resolution until it reaches the end of the terrain map for the project.

5.2.4. For all plan production LDA Design will produce a ZTV that has a base and overlay of the 1:50,000 Ordnance Survey Raster mapping or better. The ZTV will be reproduced at a suitable scale on an A3 template to encompass the study area.

Ground model accuracy

5.2.5. Depending on the project and level of detail required, different height datasets may be used. Below is listed the different data products and their specifications:

<table>
<thead>
<tr>
<th>Product</th>
<th>Distance Between Points</th>
<th>Vertical RMSE Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiDAR</td>
<td>50cm – 2m</td>
<td>up to +/- 5cm</td>
</tr>
<tr>
<td>Photogrammetrically Derived Heights</td>
<td>2m – 5m</td>
<td>up to +/- 1.5m</td>
</tr>
<tr>
<td>Ordnance Survey OS terrain 5</td>
<td>5 m</td>
<td>up to +/- 2.5m</td>
</tr>
<tr>
<td>NextMap25 DTM</td>
<td>25 m</td>
<td>+/- 2.06m</td>
</tr>
<tr>
<td>Ordnance Survey OS terrain 50</td>
<td>50 m</td>
<td>+/- 4m</td>
</tr>
</tbody>
</table>

5.2.24. Site-specific topographical survey data may also be used where available.

True View Augmented Reality Software

5.2.25. This software runs on an iPAD and creates a 3-dimensional model of both the landform (provided by standard terrain mapping data), and an approximate model of the development (simple house models of the correct height, located and sized to match the illustrative masterplan). Based on the viewpoint location (double-checked using GPS), a view of the proposed development is generated and superimposed on the view seen through the iPAD camera lens, and this view can then be captured and recorded. Accurate location ensures that the model is shown at the right size and from the right angle and is fixed at the time of capturing the image and cannot be adjusted off site.

5.2.26. The two other aspects of accuracy are vertical (up/down) and horizontal (right/left) matching. Vertical matching is achieved using the horizon lines and terrain model provided by the ‘wireline’ and matching that to the terrain as seen in the view. Horizontal matching is achieved using terrain and/or marine binoculars to take a bearing to an object near the centre of the view and matching that to a ‘centre line’ provided by the software. This provides a ‘close enough’ match on site,
which is then further refined using ‘reference objects’. These are features which can be clearly seen in aerial photographs for accurate mapping, and in the view. A number of reference markers (usually 2-5), distributed across a view provide an effective way to ensure horizontal matching is accurate.

5.2.27. Allowing for the limitations of what can be achieved whilst on site, the software has the facility to adjust the vertical and horizontal matching once images have been captured and the user is back at a desk. This allows for instance, the addition of more reference objects, and adjustment of the vertical match on a larger, better quality screen to ensure it is as close as possible.

5.2.28. Where Ventus AR modelling has been used to further develop a visualisation into a simple photomontage, basic colour rendering may be used to differentiate walls and roofs of buildings, and screening by existing vegetation will also be shown. This is done using Adobe Photoshop (see point 7 under ‘Photomontages’ below).

Photomontages and Photowires

5.2.29. Verified / verifiable photomontages are produced in seven stages. Photowires are produced using the same overall approach, but only require some of the steps outlined below.

- Photography is undertaken using a digital SLR camera and 50mm equivalent lens. A tripod is used to take overlapping photographs which are joined together using an industry standard application to create a single panoramic image for each viewpoint. These are then saved at a fixed height and resolution to enable correct sizing when reproduced in the final images. The photographer also notes the GPS location of the viewpoint and takes bearings to visible landmarks whilst at the viewpoint.

- Creation of a ground model and 3D mesh to illustrate that model. This is created using NextMap25 DTM point data (or occasionally other terrain datasets where required, such as site-specific topographical data or
Appendix 5.2. Methodology for preparation of ZTV and Visualisations

Photogrammetrically Derived Heights) and ground modelling software. In this instance, the model was created using both a LiDAR composite digital terrain model (DTM) and a composite digital surface model (DSM) at a 2m resolution.

- The addition of the proposed development to the 3D model. The main components of the proposed development are accurately modelled in CAD and are then inserted into the 3D model at the proposed locations and elevations.

- Wireline generation – The viewpoints are added within the 3D CAD model with each observer point being inserted at 1.5m above the modelled ground plane. The location of the landmarks identified by the photographer may also be included in the model. The view from the viewpoint is then replicated using virtual cameras to create a series of single frame images, which also include bearing markers. As with the photographs, these single frame images are joined together using an industry standard application to create a single panoramic image for each viewpoint. These are then saved at a fixed height and resolution to ensure that they are the same size as the photographs.

- Wireline matching – The photographs are matched to the wirelines using a combination of the visible topography, bearing markers and the landmarks that have been included in the 3D model.

- For the photomontage, an industry standard 3D rendering application is used to produce a rendered 3D view of the proposed development from the viewpoint. The rendering uses materials to match the intended surface finishes of the development and lighting conditions according to the date and time of the viewpoint photograph.

- The rendered development is then added to the photograph in the position identified by the wireline (using an image processing application) to ensure accuracy. The images are then layered to ensure that the development appears in front of and behind the correct elements visible within the photograph. Where vegetation is proposed as part of the development, this is then added to the final photomontage.